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Abstract. The complete O(α) QED initial state (IS), final state (FS) and initial–final state (IFS) interfe-
rence corrections to the process e+e− → π+π− are presented. Analytic formulae are given for the virtual
and for the real photon corrections. The total cross section (σ), the pion angular distribution (dσ/d cosΘ)
and the π+π− invariant mass distribution (dσ/ds′) are investigated in the regime of experimentally realist-
ic kinematical cuts.
It is shown that in addition to the full O(α) corrections also the O(α2) and leading-log O(α3) photonic
corrections as well as the contributions from IS e+e−-pair production have to be taken into account if at
least per cent accuracy is required. For the data analysis we focus on an inclusive treatment of all photons.
The theoretical error concerning our treatment of radiative corrections is then estimated to be 2 per mill
for both the measurement of the total cross section and the π+π− invariant mass distribution. In addition
we discuss the model uncertainty due to the pion substructure. Altogether the precision of the theoretical
prediction matches the requirements of low energy e+e− experiments like the ones going on at DAΦNE or
VEPP-2M.

1 Introduction

Tests of the standard model (SM) as well as establishing
possible new physics deviations from it crucially depend
on our ability to make precise predictions. This requires in
the first place a precisely known set of independent input
parameters, like the fine structure constant α, the Fermi
constant Gµ and the Z boson mass MZ . In fact screen-
ing by vacuum polarization (VP) leads to an energy-scale
dependent running electromagnetic coupling constant

α(s) =
α

1 −∆α(s) , (1)

of which the precise knowledge is crucial for electroweak
precision physics. This effective coupling is sensitive to
vacuum polarization effects, with about equal contribu-
tions from leptons and quarks, causing the shift ∆α(s),
which is the sum of the lepton (e, µ, τ) contributions and
the contribution from the five light quark flavors (u, d, s, c,
b):∆α(s) = ∆αlep(s)+∆α

(5)
had(s). At higher energies s

1/2>
MZ also the heavier charged particles, the W and the top
quark contribute.

The precise definition of ∆α(s) reads

∆α(s) = −4παRe
[
Π ′
γ(s) −Π ′

γ(0)
]
, (2)

where Π ′
γ(s) is the photon vacuum polarization function

i
∫

d4xeiq·x〈0|Tjµem(x)jνem(0)|0〉
= −(q2gµν − qµqν)Π ′

γ(q
2), (3)

and jµem(x) is the electromagnetic current.
Leptonic contributions can be calculated pertur-

batively. However, due to the non-perturbative behavior of
the strong interaction at low energies, perturbative QCD
only allows us to calculate the high energy tail of the
hadronic (quark) contributions. Thus the main difficulty
to determine the relationship between the low energy fine
structure constant and the effective one at higher energies
is the accurate determination of the non-perturbative con-
tributions from low energy hadronic vacuum polarization
insertions into the photon propagator.

One way which allows us to do this is the precise mea-
surement of low energy hadronic cross sections σhad(s) ≡
σtot(e+e−→γ∗→hadrons) in e+e− annihilation. In partic-
ular at higher energies it is convenient to represent results
in terms of the cross section ratio (see AppendixA for
more details)

R(s) =
σtot(e+e−→γ∗→hadrons)
σ(e+e−→γ∗→µ+µ−)

. (4)

By exploiting analyticity of the irreducible hadronic vacu-
um polarization for complex s (dispersion relation) and
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unitarity of the scattering matrix (optical theorem) it is
possible to derive from the measured hadronic cross sec-
tions the hadronic contribution to the photon self-energy
Π ′
γ(s). The main hadronic contributions to the shift in the

fine structure constant is then given by [1,2]

∆α
(5)
had(s) = −αs

3π
Re
∫ ∞

4m2
π

ds′
R(5)(s′)

s′(s′ − s− iε)
. (5)

While at large enough values of s the cross section ratio
R(s) can be calculated in perturbative QCD, at low s one
has to use the experimental data for R(s). A drawback
of this strategy is the fact that theoretical uncertainties
are dominated by the experimental errors of the available
e+e− data. In (5) we have adopted the definition

R(s) = σ(0)had/
4πα2

3s
, (6)

which is the “undressed” hadronic cross section [3]

σ
(0)
had(s) = σhad(s)(α/α(s))

2, (7)

in terms of the lowest order µ-pair production cross section
at s� m2

µ.
The procedure described is especially important for the

precise prediction of the anomalous magnetic moment of
the muon aµ, to which the leading hadronic contribution
is given by the dispersion integral [3–8]

ahadµ =
(αmµ

3π

)2 ∞∫
4m2

π

ds
R(s)K̂(s)
s2

. (8)

This integral is similar to (5), however with a different ker-
nel K̂(s), a bounded function which increases monotoni-
cally from 0.63 at threshold (s = 4m2

π) to 1 at s→ ∞. The
theoretical error of aµ is largely due to the uncertainty of
the hadronic contribution [9] (see also [10–12]):

ahadµ = (697.4 ± 10.5) × 10−10. (9)

Interestingly the new experimental result from the Brook-
haven g-2 experiment [13] which reached a substantial im-
provement in precision leads to a new world average value

aexpµ = (11659202.3 ± 15.1) × 10−10, (10)

which agrees within 1σ with the theoretical prediction1:∣∣aexpµ − atheµ

∣∣ = 212(190)×10−11, taking (9) for ahadµ . How-
ever the significance of this deviation depends strongly on
the value of ahadµ and its error [14,15]. We refer to [16]

1 In [13] a 2.6σ deviation
∣
∣aexp
µ − athe

µ

∣
∣ = 426(165) × 10−11

was claimed, assuming the value for ahad
µ as estimated in [7].

Recent progress in evaluating the hadronic virtual light-by-
light scattering contribution [17] lead to much better agree-
ment between theory and experiment. The new result, a change
of sign in the leading π0-exchange contribution, was confirmed
in [18–21]

Table 1. Contribution to ãhad
µ = ahad

µ × 1010 from exclusive
hadronic channels and the desired accuracy for the measure-
ment of the corresponding hadronic cross sections

channel ãhad
µ acc.

ρ, ω → π+π− 506 0.3%
ω → 3π 47 ∼ 1%

φ 40 ↓
π+π−π0π0 24 ·
π+π−π+π− 14 ·

π+π−π+π−π0π0 5 10%
3π 4 ↓

K+K− 4
KSKL 1 ·

π+π−π+π−π0 1.8 ·
π+π−π+π−π+π− 0.5 ·

pp̄ 0.2 ·
2 GeV ≤ E ≤ MJ/ψ 22

MJ/ψ ≤ E ≤ MΥ 20
MΥ < E � 5

for a recent review and possible implications. For the near
future a further reduction of the experimental error to a
value of about 4 × 10−10 is expected, which could corro-
borate the discovery of new physics.

In any case the hadronic uncertainty of the theoretical
prediction will soon be a serious obstacle for the interpre-
tation of the expected experimental result. We therefore
by all means need a better theoretical prediction, i.e. a bet-
ter control of the hadronic errors. This can be by progress
in theory as well as in more precise measurements of the
hadronic cross sections at lower energies.

Because of the 1/s2 enhancement of R(s) in the in-
tegral (8) about 70% of the hadronic contribution to aµ
is coming from the ρ–ω region. Not surprisingly therefore,
the error in the prediction of aµ is mainly coming from this
low energy region. Since pion pair production at energies
below 1GeV is the dominant channel (see Table 1) an im-
proved measurement of the process e+e− → ρ, ω → π+π−
with per cent accuracy could already improve the theore-
tical prediction of aµ substantially2.

The π+π− data are usually represented in terms of the
pion form factor Fπ(s). The latter is related to the total
cross section by

σ(e+e− → π+π−) =
π

3
α2β3π
s

|Fπ(s)|2, (11)

where βπ = (1 − 4m2
π/s)

1/2 is the pion velocity. For the
cross section ratio R this reads

Rππ(s) =
β3π
4

|F (0)
π (s)|2. (12)

2 A recent analysis of four pion production which is impor-
tant at energies above 1GeV was presented in [22]
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Note that

|F (0)
π (s)|2 = |Fπ(s)|2 (α/α(s))2 (13)

is the equivalent of (7) for the pion form factor. The aim of
the present work is to discuss in some detail how to extract
precisely the pion form factor from the experimental data.

Present measurements are performed at the e+e− colli-
ders DAΦNE at Frascati [23] and VEPP-2M at Novosi-
birsk [24,25]. While at VEPP-2M in a scan data for dif-
ferent center of mass energies are taken, at the DAΦNE
experiment which is running on the φ-resonance for the
next years the radiative return due to IS photons is used
to measure hadronic cross sections below 1.02GeV. At
present the experimental analysis is based on events with a
tagged photon [26–30]. The radiative return phenomenon
also allows one to measure low energy cross sections at
the B-factories BABAR/SLAC and BELLE/KEK [31]. At
higher energies R(s) measurements are performed by the
BES Collaboration at BEPC [32]. Future plans attempt to
remeasure R(s) in the range MΦ < Ecm < MJ/ψ (PEP-N
project at SLAC).

In this paper in contrast to the photon tagging ap-
proach we focus on an inclusive treatment of all photons,
including virtual photons which materialize into anything
non-hadronic. This provides a cross-check of the tagged
photon method. Furthermore, we are able to gain control
over the theoretical error of the calculations as the full3
O(α2) IS corrections are available only for the inclusive
treatment [33] but not for the case of a tagged photon.
These corrections appear to be important since we observe
large effects: For the pion pair invariant mass distribution
dσ/ds′ which is the observable measured at DAΦNE we
find an effect of up to 15% from O(α2) IS photonic cor-
rections and of up to 8% from IS pair production. The
Yennie–Frautschi–Suura resummation of higher order soft
photons and the leading collinear log O(α3) corrections
gives us each an additional contribution of about half a per
cent and a good estimate for the accuracy we can expect
from our treatment of radiative corrections. For the tagged
photon method such an estimate seems to be more difficult
since, as already mentioned, the complete O(α2) correc-
tions are still missing. Although tagging a photon has an
advantage concerning the reduction of background, which
is mainly coming from the processes4 e+e− → π+π−π0
and e+e− → µ+µ−γ, the theoretical uncertainty is going
to dominate as soon as the experimental error is reduced
to at least per cent level. The disadvantage concerning
background reduction is partly compensated by a larger
cross section for the inclusive method in respect to the

3 The terminology used in this paper is the following: “Born
approximation” is related to the process e+e− → γ∗ → π+π−

without any additional photon attached to it; “O(αn) photonic
corrections” are obtained from the Born process by attaching
n additional real or virtual photons to it. For the case of IS
pair production the leading order QED corrections are already
of O(α2)

4 Note that together with the channel e+e− → π+π−π0 also
e+e− → π+π−π0∗ → π+π−γγ has to be subtracted as a back-
ground

tagged photon method. To obtain the pion pair invariant
mass distribution with high accuracy the energy and mo-
menta of the pions are measured in the drift chambers
of the KLOE detector. The tagging of the photon is not
necessary for this. Additionally to the IS corrections also
FS and IFS interference corrections are considered. We
observe large effects from FS contributions of up to more
than 15 per cent (in the very soft and very hard photon re-
gion) to the pion pair invariant mass distribution dσ/ds′.
With the tagged photon method the FS contribution can
be reduced by making strong cuts. However, we find that
even for very strong cuts which reduce the cross section
considerably the FS contribution still contributes up to a
few per cent to the cross section. Therefore even for this
scenario FS corrections cannot be neglected.

One of the basic problems in calculating QED correc-
tions to a process involving hadrons concerns the extended
structure of the final state particles. Fortunately, the pro-
cess we are interested in, e+e− → π+π−, is a neutral ex-
change channel which allows a separate consideration of
IS radiation and FS radiation, and the latter only is cau-
sing troubles. At long wavelength it is certainly correct to
couple the charged pions minimally to the photon, i.e., to
calculate the photon radiation from the pions as in scalar
QED. In contrast hard photons couple to the quarks. Thus
one knows the precise value of the QED contribution only
in the two limiting cases while we are lacking a precise
quantitative understanding of the transition region. In ad-
dition at the ρ-resonance one is actually not producing a
charged pion pair but the neutral vector-boson ρ0, which
further obscures a precise understanding of the radiative
corrections. In the present paper we will first consider the
QED corrections for point-like pions, which can be gene-
ralized to a description of the pions by the pion form factor
Fπ(s); graphically:

plus one, two or more virtual and/or real photons attached
in all ways to the charged lines.

Why can this procedure be trusted? There are two
main points which convince us that the model ambigu-
ity of the FS radiation cannot be too large, although we
cannot give a solid estimate of the uncertainty. In our con-
clusions below we will be more concrete on this issue. The
first point is that the FS QED corrections are ultraviolet
(UV) finite in our case. This is in contrast, for example, to
the weak leptonic decays of pseudo scalar mesons, where
the QED corrections to the effective Fermi interaction de-
pends on an UV cut-off, which in the SM corresponds to
a large logarithm which probes the short distance (SD)
structure of the hadron. There is no corresponding SD
sensitivity in our case. This is confirmed by a recent anal-
ysis of the radiative correction to the pion form factor at
low energies within the frame work of chiral perturbation
theory [38]. In fact the correction does not depend on any
chiral low energy parameter, which would encode an even-
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tual SD ambiguity. The second important point is that the
FS correction turns out to be large (of order 10%) in re-
gions which are dominated by soft photon emission where
the treatment of the pions as point particles is actually
justified.

Another problem concerns the treatment of the vac-
uum polarization effect. In the theoretical prediction
which is to be compared with the data, the photon propa-
gator has to be dressed by the vacuum polarization (VP)
contributions (for details see AppendixB):

To extract |F (0)
π (s)|2 from the experimental data one has

to tune it by iteration in the theoretical prediction such
that the experimentally observed event sample is repro-
duced. Of course the appropriate cuts and detector effi-
ciencies have to be taken into account. If one includes the
VP effects in the theoretical prediction we obtain |F (0)

π

(s)|2 or σ(0)had, while omitting them would yield |Fπ(s)|2 or
σhad. In principle, one may calculate one from the other
by a relation like (7). The cross section ratio R(s) is only
used as an “undressed” quantity.

Aiming at increasing precision one has to define pre-
cisely which quantity we want to extract from the data.
For the calculation of the hadronic contributions (5) or
(8) one must require the full one particle irreducible (1pi)
photon self-energy “blob” which includes not only strong
interactions but also the electromagnetic and the weak
ones. Formally the relevant quantity is the time-ordered
product of two electromagnetic quark currents (3) which
in lowest order perturbation theory in the SM is just a
quark loop. While the weak interactions of quarks at low
energies are negligible the electromagnetic ones have to be
taken into account. The leading virtual plus real inclusive
photon contribution to pion pair production is about 0.7%
for s � 4m2

π and increases due to the Coulomb interac-
tion (resummation of the Coulomb singularity required)
when approaching the production threshold. Up to IFS
interference which vanishes in the total cross section, the
virtual plus real FS radiation just accounts for the electro-
magnetic interactions of the final state hadrons, which is
“internally dressing” the “bare” hadronic pion form factor.
Thus at the end we have to include somehow the FS QED
corrections into the hadronic cross section. This means
that in the photon self-energy one also has to include pho-
tonic corrections to the hadronic 1pi blob, graphically:

Including the FS photon radiation into a dressed pion form
factor Fπ looks like if we do not have to bother about the
radiation mechanism in the final state. However, it is not
possible to distinguish between IS and FS photons on an
event basis. Radiative corrections can only be applied in
a clean way if we take into account the full correction at
a given order in perturbation theory. In addition e+e−-
pairs have to be included since they cannot be separated
from photonic events if they are produced at small an-

gles with respect to the beam axis. Below we will present
and discuss the theoretical prediction for pion pair pro-
duction with virtual corrections and real photon emission
in terms of a bare pion form factor F (0)

π . We therefore ad-
vocate the following procedure: Try to measure the pion
pair invariant mass spectrum in a fully inclusive manner,
counting all events π+π−, π+π−γ, π+π−γγ, π+π−e+e−,
π+π−e+e−γ ... as much as possible and determine the bare
pion form factor F (0)

π by iteration from a comparison with
the observed spectrum to the radiatively corrected theo-
retical prediction in terms of the bare pion form factor.
In the theoretical prediction the full vacuum polarization
correction has to be applied in order to undress from the
reducible (non-1pi) effects. At the end we have to add
the theoretical prediction for FS radiation (including full
photon phase space). The corresponding quantities we will
denote by F (γ)

π (s) or σ(γ)had. To be precise

|F (γ)
π (s)|2 = |F (0)

π (s)|2
(
1 + η(s)

α

π

)
(14)

to order O(α), where η(s) is a correction factor which will
be discussed in Sect. 2. The corresponding O(α) contri-
bution to the anomalous magnetic moment of the muon
(8) is δγahadµ = (38.6 ± 1.0) × 10−11, which compares to
(46.0± 0.5± 9.0)× 10−11 estimated in [11] (see also [15]).

One could expect that undressing from the FS radi-
ation and adding it up again at the end would actually
help to reduce the dependence of the FS radiation dressed
form factor F (γ)

π (s) on the details of the hadronic photon
radiation. We will show that this is not the case, however.
In the radiative return scenario we are interested here,
FS corrections depend substantially on the invariant mass
square s′ of the pion pair and reach more than 10% when
s′<∼s (soft photons) while the FS radiation integrated over
the photon spectrum which has to be added in order to ob-
tain the O(α) corrected pion form factor F (γ)

π (s) is below
1.0%.

The low energy determination of R(s) is complicated
by the fact that an inclusive measurement in the usual
sense which we know from high energy experiments is
not possible. At low energy also hadronic events have low
multiplicity and events can only be separated by sophisti-
cated particle identification. In our case the separation
of µµ-pairs from ππ-pairs is a problem which requires
the application of cuts. However, since the µ-pair pro-
duction cross section is theoretically very well known one
may proceed in a different way: one determines the cross
section e+e−→π+π−, µ+µ− plus any number of photons
and e+e−-pairs and subtracts the theoretical prediction
for e+e−→µ+µ− plus any number of photons, including
virtual ones materializing into e+e−-pairs, and then pro-
ceeds as described before. At least this could provide im-
portant cross-checks of other ways to handle the data.

Often experiments do not include (or only partially in-
clude) the vacuum polarization corrections in comparing
theory with experiment. An example is the CMD-2 mea-
surement of the pion form factor [24,25], where no VP
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corrections have been applied in determining5 |Fπ(s)|2.
The form factor so determined includes reducible contri-
butions on the photon leg:

This “externally dressed” form factor is not what we can
use in the dispersion integrals. The 1pi photon self-energy
we are looking for, which at the end will be resummed to
yield the running charge, by itself is not an observable but
a construct which requires theoretical input besides the
measured hadronic cross section. In fact the irreducible
photon self-energy is obtained by undressing the vacuum
polarization effects according to (7). A more detailed con-
sideration of the relationship between the irreducible pho-
ton self-energy and the experimentally measured hadron
events will be briefly discussed in AppendixB.

Our results are presented and discussed in the next sec-
tion. The importance of IS and FS corrections to dσ/ds′
can be seen in Fig. 3. In Fig. 9 dσ/ds′ with O(α2) IS and
O(α) FS contributions are shown for realistic angular cuts.
The other figures and tables are related to the investiga-
tion of higher order photonic corrections, IS pair produc-
tion contributions, pion mass effects, IFS interference cor-
rections (dσ/d cosΘ) and the precision of the numerical
calculations. A case of a tagged photon with strong kine-
matical cuts is also briefly discussed. In Sect. 3 we consider
the determination of |Fπ|2 by an inclusive measurement
of the pion pair spectrum in a radiative return scenario,
like possible at DAΦNE. Conclusions and an outlook fol-
low in Sect. 4. AppendixA is devoted to considerations
on the experimental determination of R(s). Details about
“undressing” physical cross sections from vacuum polari-
zation effects are given in AppendixB. In AppendixC we
comment on the form factor parameterization of the π+π−
final state.

2 Analytic and numerical results
and their discussion

In the Born approximation the cross section for the pro-
cess e−(p1) + e+(p2) → π−(k1) + π+(k2) is of the form(

dσ0
dΩ

)
=
α2β3π(s)

8s
sin2Θ|Fπ(s)|2, (15)

where Θ is the angle between the π− momentum and the
e− momentum, s = (p1+p2)2 and βπ(s) = (1−4m2

π/s)
1/2,

with mπ being the pion mass. The form factor Fπ(s) en-
codes the substructure of the pions (see AppendixC). It
takes into account the general π+π−γ vertex structure

5 In the final presentation of the CMD-2 data [25] VP correc-
tions have been applied together with the FS correction (14)
to the “bare” cross section referred to as σ0

ππ(γ)

e
�

e
+







�
�

�
+







�

Initial State Corrections

Final State Corrections

Interference Corrections

+. . .

Fig. 1. Virtual and real O(α) QED corrections to the pro-
cess e+e− → π+π−, excluding vacuum polarization diagrams.
The dots stand for the remaining IFS interference correction
diagrams

and in particular satisfies the charge normalization con-
straint Fπ(0) = 1 (classical limit). In this section we will
only consider the radiative corrections which means that
we are considering what we denoted by Fπ. The vacuum
polarization effects may be accounted for at the end via
(13). By s′ = (k1+ k2)2 we will denote the invariant mass
square of the pion pair.

Let us now consider the radiative corrections to the
Born process which are related to additional virtual and
real photons. These kind of corrections have been exten-
sively studied in the literature at the one-loop level [39–42]
and have been applied in the past by experiments in e+e−
cross section measurements. More recently radiative cor-
rections to pion pair production have been reconsidered
in [43] and were applied by the CMD-2 Collaboration for
the determination of the pion form factor [24,25]. For our
purpose, we found it necessary to redo these calculations
for the π+π− production channel. To estimate the im-
portance of the different QED correction contributions we
begin with an analysis of the cross sections without kine-
matical cuts for the total cross section σ and the pion
invariant mass distribution dσ/ds′. Here only IS and FS
corrections have to be taken into account since as a con-
sequence of charge conjugation invariance of the electro-
magnetic interaction the IFS interference corrections do
not contribute to these observables.

The IS corrections include the O(α2) [33] and the
leading-log O(α3) [34] photonic corrections as well as the
contributions from initial state fermion pair production
[33,35–37] (see Fig. 2). Among the latter only e+e−-pair
production is numerically relevant. The FS corrections are
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Fig. 2a,b. Initial state fermion pair production. Diagram a
shows an example of a non-singlet contribution, f+f− being a
fermion pair which is radiated off the initial state electron or
positron. For f = e also singlet contributions like diagram b
have to be taken into account

given to O(α) where the pion masses are kept everywhere.
Yennie–Frautschi–Suura resummation [44,45] was applied
to the IS and FS soft photon contributions. We then ob-
tain (z = s′/s)

dσ
ds′

=
(
dσ
ds′

)
ini

+
(
dσ
ds′

)
fin
, (16)(

dσ
ds′

)
ini

=
σ0(s′)
s

{[
1 + δ̃V+S

ini (s)
]

× Be(s) [1 − z]Be(s)−1 + δ̃Hini(s, s
′)
}
, (17)(

dσ
ds′

)
fin

=
σ0(s)
s

{
−δ(1 − z) +

[
1 + δ̃V+S

fin (s)
]

(18)

× Bπ(s, s′) [1 − z]Bπ(s,s′)−1 + δ̃Hfin(s, s
′)
}
,

with

Be(s) =
2α
π

[Le − 1] , (19)

Bπ(s, s′) =
2α
π

s′βπ(s′)
sβπ(s)

×
[
1 + β2π(s

′)
2βπ(s′)

log
(
1 + βπ(s′)
1 − βπ(s′)

)
− 1
]
, (20)

δ̃V+S
ini (s) = δ̃V+S(1)

ini (s)+δ̃V+S(2)
ini (s)+δ̃V+S(3)

ini (s), (21)

δ̃
V+S(1)
ini (s) =

α

π

[
−2 +

π2

3
+

3
2
Le

]
, (22)

δ̃
V+S(2)
ini (s) =

(α
π

)2 [
L2e

(
9
8

− π
2

3

)

+ Le

(
−45
16

+
11
12
π2 + 3ζ(3)

)]
+ . . . , (23)

δ̃
V+S(3)
ini =

(α
π

)3
(Le − 1)3

[
9
16

− π
2

2
+
8
3
ζ(3)

]
, (24)

δ̃Hini(s, s
′) = δ̃H(1)

ini (s, s′) + δ̃H(2)
ini (s, s′) + δ̃H(3)

ini (s, s′)

+ δ̃pp(2)ini (s, s′) + δ̃pp(3)ini (s, s′), (25)

δ̃
H(1)
ini (s, s′) = −α

π
(1 + z) (Le − 1) , (26)

δ̃
H(2)
ini (s, s′) =

(α
π

)2{
L2e

[
−1 + z2

1 − z log z

+ (1 + z)
(

−2 log(1 − z) + log z
2

)

− 5
2

− z
2

]
+ Le

[
1 + z2

1 − z
× (Li2(1 − z) + log z log(1 − z)
+

7
2
log z − 1

2
log2 z

)
+ (1 + z)

×
(
1
4
log2 z + 4 log(1 − z) − π

2

3

)

− log z + 7 +
z

2

]}
+ . . . , (27)

δ̃
H(3)
ini (s, s′) =

(α
π

)3
(Le − 1)3

1
6

×
{

−27
2

+
15
4
(1 − z) + 2(1 + z)

× [
π2 − 6 log2(1 − z) + 3Li2(1 − z)]

+ 3 log z
(
11
2

− 6
1 − z +

3
2
z

)

+ log2 z
(

−7
2
+

4
1 − z − 7

2
z

)
− 6 log(1 − z)(5 + z) + 6 log z log(1 − z)
×
(
3 − 4

1 − z + 3z
)}
, (28)

δ̃
pp(2)
ini = θ(s− s′ − 4me

√
s)

×
[
δ̃
NSin(2)
ini + δ̃Sin(2)ini + δ̃Int(2)ini

]
, (29)

δ̃
NSin(2)
ini =

(α
π

)2 1
3

{
1 + z2

2(1 − z)L
2
e +

[
1 + z2

1 − z
×
(
log

(1 − z)2
z

− 5
3

)
− 2(1 − z)

]
Le

+
1 + z2

1 − z
[
1
2
log2

(1 − z)2
z

− 5
3
log

1 − z
z

− π
2

3
+

28
9

]
− (1 − z)

×
[
2 log

(1 − z)2
z

− 19
3

]
− z2

1 − z
×
[
1
2
log2 z + Li2(1 − z)

]
− log z

}
, (30)

δ̃
Sin(2)
ini =

(α
π

)2{[1
2
(1 + z) log z +

1
3z

+
1
4

− 1
4
z − 1

3
z2
]
L2e +

[
(1 + z)

(
2 log z

× log(1 − z) − log2 z + 2Li2(1 − z)
)

+
(

4
3z

+ 1 − z − 4
3
z2
)
log(1 − z)

−
(

2
3z

+ 1 − 1
2
z − 4

3
z2
)
log z − 8

9z
− 8

3

+
8
3
z +

8
9
z2
]
Le

}
+ . . . , (31)
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δ̃
Int(2)
ini =

(α
π

)2{1 + z2

1 − z
×
[
−Li2(1 − z) − 1

2
log2 z − 3

4
log z

]

− 7
4
(1 + z) log z − 4 +

7
2
z

}
Le + . . . , (32)

δ̃
pp(3)
ini = θ(s− s′ − 4me

√
s)

×
[
δ̃
NSin(3)
ini + δ̃Sin(3)ini + δ̃Int(3)ini

]
, (33)

δ̃
NSin(3)
ini =

(α
π

)3
Le

[
1 + z2

1 − z L
2
e

×
(
2
3
log(1 − z) − 1

3
log z +

1
2

)

+ L2e

(
1 + z
6

log z − 1 − z
3

)

+
1 + z2

1 − z Le
(
2 log2(1 − z) − 11

9

× log(1 − z) − 9
4

− 2
9
π2 − 2 log z

× log(1 − z) + 1
3
log2 z +

11
18

log z
)

+ Le

(
−8
3
(1 − z) log(1 − z)

+
2
3
(1 + z) log z log(1 − z) − 1

6
(1 + z)

× log2 z +
4
9
(1 − 5z) log z +

2
3
(1 + z)

× Li2(1 − z) + 19
9
(1 − z)

)

+
1 + z2

1 − z
(
16
9
log3(1 − z) − 7

3
log2(1 − z)

+
67
27

log(1 − z) − 8
9
π2 log(1 − z) − 8

3

× log z log2(1 − z) + 7
3
log z log(1 − z)

+
5
6
log2 z log(1 − z) − 1

3
Li2(1 − z)

× log(1 − z) − 1
18

log3 z − 31
72

log2 z

− 67
54

log z − 2
3
Li2(1 − z) log z + 4

9
π2

× log z − 1
4
Li2(1 − z) − 5

3
S1,2(1 − z)

− 2
9
π2 + 4ζ(3) +

1073
162

)]
, (34)

δ̃
Sin(3)
ini = −

(α
π

)3 1
36

(Le − 1)3 (35)

×
[
1 − z
3z

(4 + 7z + 4z2) + 2(1 + z) log z
]
,

δ̃
Int(3)
ini =

(α
π

)3 5
24

(Le − 1)3

×
[(

3
2
+ 2 log(1 − z)

)

×
(
1 − z
3z

(4 + 7z + 4z2)

+ 2(1 + z) log z

)
+ (1 + z)

(
− log2 z

+ 4Li2(1 − z)
)
+

1
3
(−9 − 3z + 8z2

)
× log z +

2
3

(
−3
z

− 8 + 8z + 3z2
)]
, (36)

δ̃V+S
fin (s) =

α

π

{
3s− 4m2

π

sβπ
log
(
1 + βπ
1 − βπ

)
− 2

− 1
2
log
(
1 − β2π

4

)
− 3

2
log
(
s

m2
π

)

− 1 + β2π
2βπ

[
log
(
1 + βπ
1 − βπ

)[
log
(
1 + βπ

2

)

+ log(βπ)] + log
(
1 + βπ
2βπ

)
log
(
1 − βπ
2βπ

)

+ 2Li2

(
2βπ

1 + βπ

)
+ 2Li2

(
−1 − βπ

2βπ

)

− 2
3
π2
]}
, (37)

δ̃Hfin(s, s
′) =

2α
π
(1 − z)βπ(s

′)
β3π(s)

, (38)

Li2(x) = −
x∫

0

dy
y

log(1 − y),

S1,2(x) =
1
2

x∫
0

dy
y

log2(1 − y), Le = log
(
s

m2
e

)
.

The O(α3) corrections (24), (28) and (33) are taken from
[34] and [36,37] respectively. The dots in (23), (27), (31)
and (32) correspond to O(α2) contributions which do not
contain any log(s/m2

e) terms and can be neglected safely.
Figure 3 shows the pion pair invariant mass distributions
dσ/ds′ with radiative corrections normalized to dσ/ds′

with only O(α) IS corrections (s1/2 = 1.02GeV). In Ta-
ble 2 the contribution from IS O(α2) and FS O(α) pho-
tonic corrections are shown for different center of mass
energies.

The following points can be recognized.

(1) The FS corrections (dotted line) are quite large, espe-
cially in the region of soft photons as well as for very
hard photons.

(2) The O(α2) IS effects are considerable.
(3) The FS and IS contributions compensate each other

significantly for large s′.

Figure 4 shows dσ/ds′ for different center of mass en-
ergies s1/2. Going to smaller center of mass energies the
O(α2) IS corrections become smaller and smaller. On the
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Fig. 3. Pion pair invariant mass distributions (dσ/ds′) with
radiative corrections, normalized to dσ/ds′ with only O(α) IS
corrections. The thick line shows the case when up to O(α2)
IS and O(α) FS contributions (excluding IS pair production)
are taken into account and appropriately resummed [see (16)–
(18)]. The thin solid line shows the same but this time with-
out resummation. The dotted line corresponds to the O(α) FS
corrections (together with O(α) IS corrections). For the long-
dashed and the dot-dashed lines only the resummed IS O(α2)
and the resummed IS O(α) radiative corrections are taken into
account, respectively

Table 2. Contribution of O(α2) IS and O(α) FS corrections
to dσ/ds′ (in%), s1/2 = 1.02GeV

√
s′[GeV] O(α2) IS O(α) FS

contribution contribution

0.3 4.3 11.5
0.4 4.4 4.3
0.5 4.0 3.2
0.6 3.4 2.0
0.7 2.2 0.9
0.76 1.2 0.7
0.8 0.2 1.2
0.9 −3.6 5.5
0.95 −6.9 10.1
1.0 −15.3 16.6

other hand the FS contributions remain considerably
large. Interestingly, for the φ-resonance energy (s1/2 =
1.02GeV) both the O(α2) IS and the O(α) FS contribu-
tions are large. Quantitatively this is shown in Table 2.
The resummation of the O(α2) IS soft photon logarithms
[see (17)] gives a contribution smaller than 5 per mill for
s′ below the ρ-resonance peak and smaller than 3 per mill
above it. The resummation of FS soft photon logarithms
[see (18)] changes the complete results only slightly (less
than 0.5 per mill).
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1.02

Fig. 4. Pion pair invariant mass distributions (dσ/ds′) for
different center of mass energies s1/2 = 0.6, 0.76, 0.9, 1.0,
1.02GeV. The solid lines stands for the “complete” cross sec-
tion, including O(α2) IS and O(α) FS corrections [see (16)–
(18)]. The dotted lines give the results when the O(α2) IS cor-
rections are neglected. The dot-dashed lines correspond to the
case when the O(α) FS contribution is neglected

Table 3. O(α2) contribution from IS pair production to dσ/ds′

(in per mill). In the second column only the singlet contribution
(including singlet–non-singlet interference) is shown

√
s′ [GeV ] O(α2) IS pp Singlet

contribution contribution

0.3 79.1 74.9
0.4 36.3 31.9
0.5 16.6 12.2
0.6 8.3 4.0
0.7 4.8 0.76
0.76 3.9 −0.01
0.8 3.4 −0.24
0.9 2.7 −0.27
1.0 1.2 0.06

To reduce the theoretical error to a few per mill one
also has to include the contributions from initial state
e+e−-pair production [33,35–37], given in (29) and (33).
In Table 3 and 4 theO(α2) and leadingO(α3)-pair produc-
tion contributions to dσ/ds′ for different hadronic energies
are presented. What is remarkable is the very large singlet
contribution [see Fig. 2b] in the region of low hadronic en-
ergies which amounts about 8 per cent for s′1/2 = 0.3GeV.
Since these effects are related to e+e−-pairs which are
mainly emitted collinearly to the beam axis, they escape
detection and therefore have to be included into the data
analysis. Hence when unfolding the data from radiative
corrections also these effects have to be subtracted. The
leading contribution from O(α3)-pair production appears
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Table 4. O(α3) IS pair production contribution to dσ/ds′ (in
per mill)

√
s′ [GeV ] O(α3) IS pp Singlet

contribution contribution

0.3 −0.87 −1.27
0.4 −0.45 −0.82
0.5 −0.18 −0.48
0.6 −0.07 −0.27
0.7 −0.09 −0.15
0.76 −0.15 −0.10
0.8 −0.21 −0.07
0.9 −0.43 −0.03
1.0 −0.72 −0.001

Table 5. O(α3) leading-log IS photon contribution to dσ/ds′

(in per mill)
√

s′ [GeV ] O(α3) IS
contribution

0.3 3.9
0.4 4.3
0.5 4.2
0.6 3.8
0.7 3.0
0.76 2.4
0.8 1.8
0.9 0.3
1.0 0.6

to be less than 1 per mill which gives us a good estimate
about the precision we can expect.

We also take into account the leading-log O(α3) IS
photon correction [34], which is given in (24) and (28).
The contribution can be of the order of 4 per mill for
hadronic energies below the ρ-resonance peak, as shown
in Table 5.

The total cross section σ(s) can be obtained by carry-
ing out the s′ integration in (16) numerically. For σ(s) the
O(α2) IS corrections are not as important as for dσ/ds′

(they account for at most 1%, at s1/2 = 1.02GeV 2 per
mill). Neglecting the O(α2) corrections, σ(s) can then be
written in the following simple form:

σ(s) = σ0 [1 + δini(Λ) + δfin(Λ)]

+
∫ s−2

√
sΛ

4m2
π

ds′σ0(s′)ρini(s, s′) (39)

+ σ0(s)
∫ s−2

√
sΛ

4m2
π

ds′ρfin(s, s′),

with

δini(Λ) = log
(
2Λ√
s

)
Be(s) + δ̃

V+S(1)
ini (s), (40)
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Fig. 5. Total cross section σ(s) as a function of the center
of mass energy. The solid line corresponds to σ(s) as given
in (39). The dotted line corresponds to the Born cross section.
The dot-dashed line corresponds to the Born cross section with
only O(α) IS corrections

Table 6. Contribution of O(α) FS corrections to the total
cross section (in %)

√
s [GeV ] O(α) FS

contribution

0.3 3.6
0.4 1.2
0.5 0.9
0.6 0.9
0.76 0.7
0.9 0.4
1.02 0.3

δfin(Λ) = log
(
2Λ√
s

)
Bπ(s, s′) + δ̃

V+S(1)
fin (s), (41)

ρini(s, s′) =
1
s

[
δ̃
H(1)
ini (s, s′) +

Be(s)
1 − z

]
, (42)

ρfin(s, s′) =
1
s

[
δ̃Hfin(s, s

′) +
Bπ(s, s′)
1 − z

]
, (43)

where Λ is the soft photon cut-off energy which drops out
in the sum (39).

The total cross section is plotted in Fig. 5. In Table 6
the O(α) FS corrections to σ(s) for different center of
mass energies are shown. Although it can be hardly rec-
ognized directly from the figure, the FS contributions are
not marginal for energies below the ρ-resonance peak.

Taking the high energy limit in (39) provides a good
cross-check for the FS correction results. Carrying out the
s′ integration for s→ ∞ and adding this result to the high
energy virtual and soft photon FS corrections leads to an
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expression in which the s dependence drops out. This has
to be the case according to the Kinoshita–Lee–Nauenberg
theorem [46,47] which requires the collinear logarithms to
cancel. In addition all terms proportional to π2 drop out.
Defining

η(s) ≡ π

α

[
δfin(Λ) +

∫ s−2
√
sΛ

4m2
π

ds′ρfin(s, s′)

]
, (44)

one can write the total cross section with only O(α) FS
corrections in the following compact way:

σfin(s) =
[
1 + η(s)

α

π

]
σ0(s). (45)

The function η(s) is given by [48,49,15]

η(s) =
1 + βπ2

βπ

{
4Li2

(
1 − βπ
1 + βπ

)
+ 2Li2

(
−1 − βπ
1 + βπ

)

− 3 log
(

2
1 + βπ

)
log
(
1 + βπ
1 − βπ

)

− 2 log(βπ) log
(
1 + βπ
1 − βπ

)}

− 3 log
(

4
1 − βπ2

)
− 4 log(βπ)

+
1
βπ

3

[
5
4
(1 + βπ2)2 − 2

]
log
(
1 + βπ
1 − βπ

)

+
3
2
1 + βπ2

βπ
2

and provides a good measure for the dependence of the
observables on the pion mass. Neglecting the pion mass
is obviously equivalent to taking the high energy limit. In
this limit we observe

η(s→ ∞) = 3. (46)

Our result in (46) agrees with the result obtained by
Schwinger [48] but disagrees with that in [43] for which
in this limit the terms ∝ π2 do not drop out. In Fig. 6
η(s) is plotted as a function of the center of mass en-
ergy. It can be realized that for energies below 1GeV the
pion mass leads to a considerable enhancement of the FS
corrections. Regarding the desired precision, ignoring the
pion mass would therefore lead to wrong results.

Close to threshold for pion pair production (s 
 4m2
π)

the Coulomb forces between the two final state pions play
an important role. In this limit the factor η(s) becomes
singular [η(s) → π2/2βπ] which means that the O(α)
result for the FS correction cannot be trusted anymore.
Since these singularities are known to all orders of per-
turbation theory one can resum these contribution, which
leads to an exponentiation [48]:

σfin(s) = σ0

(
1 + η(s)

α

π
− πα

2βπ

)
πα

βπ

×
[
1 − exp

(
−πα
βπ

)]−1

. (47)
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Fig. 6. The FS correction factor η(s) as a function of the
center of mass energy s1/2 [see (44)–(46)]

Above a center of mass energy of s1/2 = 0.3GeV the
exponentiated correction to the Born cross section devi-
ates from the non-exponentiated correction less than 1%.

We now consider the IFS interference corrections (see
Fig. 1) which modify the angular distribution. To O(α) we
can write(

dσ
dΩ

)
=
(
dσ0
dΩ

)[
1 + δ(Λ)

]
+
(
dσh
dΩ

)
(Λ), (48)

where the correction factor δ is the sum of the virtual plus
soft photon IS, FS and IFS interference correction factors:

δ(Λ) = δini(Λ) + δfin(Λ) + δint(Λ). (49)

dσh/dΩ is the hard photon contribution which is calcu-
lated numerically. δini(Λ) and δfin(Λ) are given in (40) and
(41). δint(Λ) can be written in the following, compact way:

δint =
2α
π

{
log
(−u+m2

π

−t+m2
π

)
log
(
4Λ2

s

)

+
1
4

s2

ut−m4
π

{
u− t
s

[c1(u) + c1(t) + ce + cπ]

+
u+ t
s

[c1(u) − c1(t)]
}

− F (u)
2

+
F (t)
2

}
, (50)

with (x = u, t, κi = κi(x))

c1(x) =
1
2

{
3 log2

(
x−m2

π

x

)
− 1

2
log2

(
−m

2
e

x

)

− 1
2
log2

(
−m

2
π

x

)
− 2 log

(
−m

2
π

x

)

× log
(
x−m2

π

x

)
+ 2Li2

(
− m2

π

x−m2
π

)
− π

2

3

}
,

cπ =
1 + β2π
2βπ

[
2Li2

(
1 + βπ

2

)
− 2Li2

(
1 − βπ

2

)
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+ Li2

(
−1 + βπ
1 − βπ

)
− Li2

(
−1 − βπ
1 + βπ

)

+ log
(
s

m2
π

)
log
(
1 + βπ
1 − βπ

)]
,

ce =
1
2
log2

(
s

m2
e

)
+
π2

6
,

F (x) =
[
fx1 (κ1) − fx1 (κ2) − fx1 (κ4) + fx2 (κ3)

− fx3 (κ1, κ2) − fx3 (κ4, κ1) + fx3 (κ4, κ2)
+ fx4 (κ2, κ1) + f

x
4 (κ1, κ4) + f

x
4 (κ2, κ4)

− fx5 (κ3, κ1) + fx5 (κ3, κ2) − fx5 (κ3, κ4)
− fx6 (κ1, κ3) − fx6 (κ2, κ3) + fx6 (κ4, κ3)

]
,

fx1 (η) =
1
2
log2[bx − η] − 1

2
log2[a− η],

fx2 (η) =
1
2
log2[η − a] − 1

2
log2[η − bx],

fx3 (η1, η2) = −Li2

[
(bx − a)(η1 − η2)
(bx − η1)(a− η2)

]

+ Li2

(
−bx − a
a− η2

)
+ Li2

(
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bx − η1

)

+ log(bx − η1) log
(
bx − η2
a− η2

)
,

fx4 (η1, η2) = Li2

[
(bx − a)(η2 − η1)
(bx − η2)(a− η1)

]

− Li2

(
−bx − a
a− η1

)
− Li2

(
bx − a
bx − η2

)

+ log(a− η1) log
(
bx − η2
a− η2

)
,

fx5 (η1, η2) = log[η1 − η2] log
(
bx − η2
a− η2

)

+ Li2

(
a− η2
η1 − η2

)
− Li2

(
bx − η2
η1 − η2

)
,

fx6 (η1, η2) = log[η2 − η1] log
(
η2 − bx
η2 − a

)

+ Li2

(
η2 − a
η2 − η1

)
− Li2

(
η2 − bx
η2 − η1

)
,

a = βπ(s), bx = βe(s) + 2
√

−x
s
,

κ1,2 ≡ κ1,2(x) = −1

+
1√−sx

[
−x+m2

e −m2
π ±

√
λ(x,m2

e,m
2
π)
]
,

κ3,4 ≡ κ3,4(x) = 1

+
1√−sx

[
−x+m2

e −m2
π ±

√
λ(x,m2

e,m
2
π)
]
,

λ(x, y, z) = z2 + y2 + z2 − 2xy − 2xz − 2yz.

From (50) it can be seen immediately that δint is anti-
symmetric, thus it changes sign under the exchange t↔ u
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Fig. 7. π− angular distribution for s1/2 = 1.02GeV. The solid
line, corresponding to the complete O(α) corrections, is not
symmetric as a consequence of the IFS interference corrections.
Both the tree level distribution and the distribution with only
IS and FS corrections are symmetric

Table 7. Contribution of the interference terms (in%) to the
differential cross section (corresponding to the solid and dotted
line in Fig. 7)

cosΘ
dσB+IS+FS

d cosΘ / dσtot
d cosΘ IFS interference

−1.0 0.99/ 1.46 47.5
−0.99 2.95/3.33 12.9
−0.94 11.12/11.74 5.6
−0.6 44.03/44.97 2.1
−0.2 59.91/60.3 0.6
0. 61.76/ 61.76 0.0
0.2 59.91/ 59.53 −0.6
0.6 44.03/43.09 −2.1
0.94 11.12/10.49 −5.6
0.99 2.95/2.56 −13.2
1.0 0.99/ 0.52 −47.5

[t(u) = (p1 − k2(1))2]. This is actually required by charge
conjugation invariance.

Table 7 shows the IFS interference contribution to the
pion angular distribution (Fig. 7). One can recognize that
with an angular cut between the pion momentum and the
beam axis of 20◦ ≤ Θ ≤ 160◦ this is not larger than 5.6%.
The importance of the interference contribution can be
enhanced by tagging the photon and imposing a strong
cut on the angle between the photon momentum and the
beam axis [28] (see Fig. 8). This seems to be the only way
to tackle the imaginary part of the pion form factor.

The results presented so far have been obtained by the
dedicated Fortran program Aφρωdite. It generates cross
sections with the option of kinematical cuts [50] as needed
by experiment. As shown before, the O(α2) IS (photonic
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Fig. 8. Lowest order π− angular distribution for the case of a
tagged photon. The angular cut between the photon momen-
tum and the beam axis is chosen such that only photons in the
angular range 60◦ ≤ Θγ ≤ 120◦ are detected. The difference
between the solid and dotted line is due to an additional cut
between the tagged photon and the pions, 7◦ ≤ Θγπ ≤ 173◦

(solid line). This cut was also applied to the remaining dashed
and dot-dashed line. The curves correspond to different values
for the minimal photon energy Λ. The solid and the dotted line
correspond to Λ = 0.01GeV, the dashed line to Λ = 0.02GeV
and the dot-dashed line to Λ = 0.03GeV

and IS pair production) contributions to dσ/ds′ are con-
siderable and even O(α3) leading-log contributions should
be included. Analytical formulae for the full O(α2) IS cor-
rections with cuts have not been calculated so far. At this
stage we therefore rely on the complete results without
cuts dσ(compl)/ds′ as given in (16) with the following ap-
proximation6:

(
dσ(compl)

ds′

)
cuts




(
dσ(compl)

ds′

)
no cuts(

dσ(α)

ds′

)
no cuts

(
dσ(α)

ds′

)
cuts
. (51)

dσ(α)/ds′ is the differential cross section to O(α). See
Fig. 9 for an example. In the limit s′ → s the above ap-
proximation is exact since then the radiated photons are
soft. In principle we can expect that away from this limit
the situation is different since the contribution from a sec-
ond hard photon could distort the angular distribution of
the pions. The distortion however remains below 1 per
mill for s′ ≥ 0.3GeV2 and an angular cut between the
pion momenta and the beam axis of less than 30 degrees7.

In the case of a tagged photon the FS corrections can
be reduced by applying strong cuts between the photon
and the final state particles. See Fig. 10 for such a strong
cut scenario at the φ peak. It can be seen that the strong

6 For an exact treatment we would need the analytic expres-
sion for the angular distribution at O(α2)

7 We thank S. Jadach for help in checking this with a dedi-
cated MC program based on [51]
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Fig. 9. Pion pair invariant mass distribution with an angular
cut 30◦ ≤ Θ ≤ 150◦ between the π± momenta and the beam
axis, s1/2 = 1.02GeV
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Fig. 10. Pion pair invariant mass distribution dσ/ds′ for the
case of a tagged photon. Set A corresponds to a 7◦ angular cut
between the photon momentum and the beam axis and a 30◦

cut between the π± momenta and the beam axis. For set B the
pion cuts are the same but the photon cut is now 20◦. Taking
the difference (Set A – Set B) the photon is restricted to a re-
gion well separated from the pion momenta [28]. The solid lines
correspond to the complete cross section (Born plus IS and FS
bremsstrahlung); for the dotted lines FS bremsstrahlung is ne-
glected

cuts reduce the FS contribution considerably. However, as
shown in Table 8, the FS contribution still amounts up to
a few per cent. Although the presented results are based
on an O(α) calculation (a similar approximation as the
one given in (51) is not possible) it is highly improba-
ble that the situation will improve if O(α2) corrections
are included. Finally a few remarks about the Aφρωdite
program. To check the numerical accuracy, the four di-
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Table 8. dσ/ds′ in [nb/GeV2], for some values of s′. The FS
contribution for a strong cut scenario (Set A – Set B) is shown.
It is 1.6%, 2.2%, 2.9% for s′ = 0.8, 0.85, 0.9GeV2, respectively

s′ Set A Set B set A − set B
all no FS all no FS all no FS

0.8 11.994 9.981 18.231 16.121 6.237 6.140
0.85 12.252 9.494 18.201 15.313 5.949 5.819
0.9 14.212 10.168 20.615 16.384 6.403 6.216

Table 9. Cut-off dependence of the total cross section σ ob-
tained from four dimensional numerical integration, s1/2 =
1.02GeV. δσ is the absolute numerical error to σ

Λ [GeV] σ [nb] δσ [nb]

0.1 94.907 0.0095
0.01 99.123 0.0104
0.001 99.394 0.0129
0.0001 99.420 0.0157

10−5 99.422 0.0210
10−6 99.422 0.0255
10−7 99.422 0.0303
10−8 99.421 0.0357
10−9 99.422 0.0418
10−10 99.421 0.0493

mensional phase space integration has been carried out
numerically to obtain the total cross section without cuts
(see Table 9). This is then compared to the total cross
section obtained from (39) by one dimensional integra-
tion (Table 10). We observe excellent agreement. Table 10
and Table 9 in addition show the total cross section as a
function of the soft photon energy cut-off Λ. For values of
Λ < 10−4GeV we get stable cut independent results.

3 The pion form factor from radiative return

The pion pair invariant mass spectrum in scalar QED may
be written in the form

dσ
ds′

=
(
dσ
ds′

)
ini

+
(
dσ
ds′

)
int

+
(
dσ
ds′

)
fin
. (52)

Considering only the O(α) contribution we can write(
dσ
ds′

)
ini

= Nini(s, s′)|Fπ(s′)|2

×
∫
cuts

d cosΘγd cosΘπ−dφπ−
∑
λ

|Mpoint
ini |2,

(
dσ
ds′

)
int

= Nint(s, s′)2Re

[
Fπ(s′)F ∗

π (s)

×
∫
cuts

d cosΘγd cosΘπ−dφπ−
∑
λ

Mpoint
ini M∗ point

fin

]
,

Table 10. Cut-off dependence of the total cross section σ
obtained from one dimensional numerical integration, s1/2 =
1.02GeV. δσ is the absolute error to σ

Λ [GeV] σ [nb] δσ [nb]

0.1 94.909344406421 2 · 10−9

0.01 99.126309344279 2 · 10−11

0.001 99.396403660854 2 · 10−9

0.0001 99.422466900996 3 · 10−9

10−5 99.425064117054 6 · 10−9

10−6 99.425323747942 7 · 10−9

10−7 99.425349708976 7 · 10−9

10−8 99.425352318987 1 · 10−8

10−9 99.425352327085 1 · 10−8

10−10 99.425352168781 1 · 10−8

(
dσ
ds′

)
fin

= Nfin(s, s′)|Fπ(s)|2

×
∫
cuts

d cosΘγd cosΘπ−dφπ−
∑
λ

|Mpoint
fin |2,

where the Ni(s, s′)’s are appropriate normalization fac-
tors. Θπ− is the π− production angle and Θγ the angle
between the emitted photon and the π− in the center of
mass system of the π+π−-pair. Cuts in the laboratory
system may be implemented easiest by first performing a
boost from the center of mass system of the pion pair to
the laboratory system. If the integration over Θπ− is per-
formed with symmetric cuts in the acceptance angles Θπ±

in the laboratory frame, the O(α) interference term drops
out due to C-invariance and we are left with the IS and FS
terms only8. Photons are assumed to be treated fully in-
clusively, i.e., we integrate over the complete photon phase
space and thus obtain

(
dσ
ds′

)
sym−cut

= |Fπ(s′)|2
(
dσ
ds′

)point

ini, sym−cut

+ |Fπ(s)|2
(
dσ
ds′

)point

fin, sym−cut

and hence we may resolve for the pion form factor as

|Fπ(s′)|2 = 1( dσ
ds′
)point
ini, sym−cut

(53)

×
{(

dσ
ds′

)
sym−cut

− |Fπ(s)|2
(
dσ
ds′

)point

fin, sym−cut

}
.

This is a remarkable equation since it tells us that the
inclusive pion pair invariant mass spectrum allows us to
get the pion form factor unfolded from photon radiation
directly as for fixed s and a given s′ the photon energy

8 Note that C-invariance does not forbid a C-symmetric
O(α2) interference contribution. However we can expect such
a contribution to be negligible
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Fig. 11. The two-photon pion pair production mechanism

is determined. The point cross sections are assumed to be
given by theory and dσ/ds′ is the observed experimen-
tal pion pair spectral function. In spite of the fact that
both terms on the r.h.s. of (53) are of O(α) the second
one can be treated as a correction because the IS radia-
tion dominates in comparison to the FS radiation. We ob-
serve that in the determination of |Fπ(s′)|2 via the radia-
tive return mechanism the FS radiation to be subtracted
only depends on |Fπ(s)|2 at the fixed energy s = M2

φ.
Note that we also benefit from the fact that |Fπ(M2

φ)|2 is
small in comparison to |Fπ(s′)|2 in the most relevant re-
gion around the ρ-peak. Below about 600MeV, however,
|Fπ(s′)|2 drops below |Fπ(M2

φ)|2 and a precise and model
independent determination of Fπ becomes more difficult.
Note that because of the 1/s2 enhancement in the disper-
sion integral (8) the low energy tail is not unimportant as
a contribution to ahadµ .

4 Final remarks and outlook

Experimental data on pion pair production in low energy
e+e− collisions of percent level accuracy are available now
from Novosibirsk and will be available soon from Frascati.
That is why theoretical calculations of at least an accuracy
of the same order are needed. In this paper we presented
and discussed analytic and numerical results which should
allow us to reach the desired accuracy for the appropriate
observables. We advocated looking at the π+π− invariant
mass spectrum in an inclusive way for what concerns the
accompanying photon radiation. We observe that O(α)
massive FS corrections as well as O(α2) IS photonic and
e+e−-pair production corrections have to be taken into
account. Also the resummation of higher order soft pho-
ton logarithms and leading O(α3) IS photonic and pair
production contributions may be necessary.

Another background which should be estimated more
carefully is pion pair production via the two photon pro-
cess γγ → π+π− [52–54] (see Fig. 11). These events have
a different topology, typically the pion pair appears to be
boosted in the beam direction and may be eliminated by
appropriate event selection. At the level of total cross sec-
tions e+e− → e+e−γ∗γ∗ → e+e−π+π− is at least an order
of magnitude smaller than the leading pion pair produc-
tion mechanism at energies below the φ mass.

Supposing that the two-photon π+π− production is,
or can be made, sufficiently suppressed, and under the
condition that pion pair acceptance cuts are applied in a
C-symmetric way and hence the IFS correction drops out,
the inclusive pion pair distribution dσ/ds′ is of the form
(16):

dσ
ds′

= σ0(s′)ρini(s, s′) + σ0(s)ρfin(s, s′), (54)

which we may solve for σ0(s′) (alternative form of (53)):

σ0(s′) =
1

ρini(s, s′)

{
dσ
ds′

− σ0(s)ρfin(s, s′)
}
. (55)

At DAΦNE s is fixed at s = M2
φ and hence the FS ra-

diation factor multiplies the fixed pion pair cross section
σ0(s = M2

φ) at the φ. The FS subtraction term in (55) is
an at most 10% correction of the first and leading term for
0.3GeV < s′1/2 < 0.95GeV (in the ρ-resonance region the
contribution is of the order of 1%), although both terms
are formally of the same order O(α).

Such a measurement should be complementary to the
photon tagging method9, which is not yet as well under
control as the inclusive pion mass spectrum. Since the
process e+e−→µ+µ− is theoretically very well under con-
trol but the separation of π+π− and µ+µ− states is quite
non-trivial, experimentally one actually should perform
an inclusive measurement also with respect to muon pair
production and then subtract the theoretical µ+µ− cross
section. At least this could provide an important cross-
check for the particle identification procedure.

Apart from the fact that it would be desirable to have
available a full O(α2) calculation for the differential cross
section, the main limitation of our approach lies in apply-
ing scalar QED to the pions generalized to an arbitrary
pion form factor up to non-factorizing O(m2

e/s) effects.
We would like to stress once more that there are strong

indications that the treatment of point-like pions together
with its generalization to extended pions modeled by a
form factor provides a reliable frame work for extracting
the pion form factor from the data. The sensitivity to the
quark structure is minimized for the relevant observables
by the fact that the QED radiative corrections are ultravi-
olet finite and hence no large renormalization group log’s
show up. Furthermore, the region s′<∼s exhibiting large FS
corrections corresponds to the soft photon regime where
our generalized scalar QED treatment of the photonic cor-
rections is reliable. However, the fact that the corrections
which could be sensitive to the hadronic compositeness are
small in the region where hard photons are involved does
not mean that uncertainties are small at low s′. The reason
is that for small s′ the emitted photons are hard and there-
fore can probe the substructure of the pions. One therefore
can question the applicability of scalar QED when treat-
ing FS radiation in this region. At the same time it is
the region where |Fπ(s′)|2 drops below |Fπ(M2

φ)|2 which
enhances the FS contribution in (53). The uncertainty in
the FS correction term carries over to the extracted form
factor.

Let us mention that the fact that we have to include FS
corrections according to (14) does not reduce the sensiti-
vity to the details of the emission of photons by hadrons,
because the FS correction one has to subtract (see (53))
is different from what one has to add at the end. The
first reflects the photon spectrum locally, the second is an
integral over the photon phase space.

9 For recent progress see [55,56]
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Fig. 12. Worst case estimate of uncertainty in FS radiation
due to non-point-like structure of the pion: fermionic versus
scalar radiator function

Fig. 13. Influence of FS radiation on the extracted pion form
factor (worst case estimate)

As a crude estimate of the uncertainty related to the
pion substructure we replace the pions by fermions of the
same charge and mass10. Hence in (55) in stead of ρfin we
take the fermion final state radiator function

ρffin(s, s
′) =

α

π

1 + s
′2
s2

s− s′
βπ(s′)
βπ(s)

s

s+ 2m2
π

×
{

1
βπ(s′)

log
(
1 + βπ(s′)
1 − βπ(s′)

)[
1 − 4m2

π

s− s′ + 2m2
π

s2 + s′2

]

− 1 − 4s′m2
π

s2 + s′2

}
. (56)

Results are shown in Figs. 12 and 13. In the soft pho-
ton region we have ρffin(s

′<∼s) 
 ρfin(s′<∼s) which reflects
the correct long range behavior. For the extraction of the
pion form factor we observe deviations of the fermionic
from the scalar approach of less than 0.1% for energies
above 560MeV. For s′1/2 > 420MeV the deviation is less
than 1%. At lower energies the difference between both
approaches becomes larger since the radiated photons be-
come harder: at s′1/2 = 360MeV we observe a deviation
of 2%, at s′1/2 = 300MeV of 6.5% which is of the same

10 We cannot just replace the pions by the quarks produced
in first place because the wrong net charge would not allow to
match the proper long distance limit

Fig. 14. FS radiation uncertainty of ahad
µ as a function as a

function of the lowest energy data point accepted (worst case
estimate)

order as the complete FS contribution in this region. Con-
cerning the determination of ahadµ we obtain a difference
between the fermionic and the scalar approach of about
2(7) per mill if we restrict the analysis to a region where
s′1/2 > 420 (300)MeV (see Fig. 14).

The estimate looks reasonable because the uncertainty
thus obtained goes to zero in the classical limit (s′→s)
and becomes of the order of the FS radiation itself in the
hard photon limit. Note that the increasing uncertainty for
low energies s′1/2 here is a consequence of the radiative
return method since in this region the emitted photons
are necessarily hard.

The error due to the missing FS O(α2) and IS O(α3)
corrections (including initial state pair production contri-
butions) is estimated to be not more than 1 per mill, re-
spectively. Concerning the QED corrections we therefore
estimate the accuracy to be at the 2 per mill level. On top
of the perturbative uncertainty we have to take into ac-
count the hadronic uncertainty discussed in the previous
paragraph.
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Appendix
A Experimental determination of R(s)

As mentioned in the introduction the hadronic cross sec-
tions are conveniently represented in terms of the cross
section ratio

R(s) ≡ σhad(s)
σµµ(s)

=
σ
(0)
had(s)

σ
(0)
µµ (s)

. (57)

The “physical” cross sections σhad and σµµ are not di-
rectly observable but are the result of the usual unfolding
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from real and virtual photon radiation. The “undressed”
cross sections σ(0)i (s) are related to the physical ones by
σ
(0)
i (s) = σi(s)(α/α(s))2 [3]. Obviously the effective cou-

pling α(s) entering the physical cross sections drops out
from the cross section ratio and hence may be replaced by
its low energy value α. Here we briefly discuss how experi-
ments determine R(s) and what the problems are thereby.
By the relation (12) our comments apply to the pion form
factor as well.

A direct measurement of the ratio of the physical cross
sections σhad and σµµ has the advantage that certain un-
wanted effects drop out from the ratio. This in particular
concerns the normalization and its uncertainties but also
the vacuum polarization effects. What still has to be cor-
rected for is phase space of σµµ in the threshold region
and the difference in final state radiation.

Experiments up to now do not actually determine the
ratio of the physical cross sections σhad and σµµ. By the
usual limitations in statistics and the fact that σµµ drops
like 1/s not far above threshold it would not be an optimal
strategy to do so.

In practice at first the integrated luminosity for each
measurement must be determined from the measurement
of a reference process like Bhabha scattering, typically.
Thus experiments in fact determine

R(s) =
Nhad(1 + δRC)
Nnormε

σnorm(s)
σµµ, 0(s)

(58)

from the ratio of the number of observed hadronic events
Nhad to the number of observed normalizing events Nnorm.
The correction δRC incorporates all radiative corrections
to the hadron production process, ε is the efficiency – ac-
ceptance product of the hadronic events and σnorm(s) is
the physical cross section for the normalizing events in-
cluding all radiative corrections integrated over the accep-
tance used for the luminosity measurement and σµµ, 0(s)=
4πα2/3s.

This shows that the determination of R(s) depends a
lot on the theoretical state of the art calculations used
to analyze the data. Unaccounted radiative corrections,
or simplifications often made in view of other sources of
uncertainties, usually contribute substantially to the sys-
tematic error of a measurement.

As mentioned above life would simplify a lot if one
would have high enough statistics which would allow us to
apply the definition (57) directly to the data. This method
would be suitable for a precise determination of the low
energy tail of the pion form factor where σµµ has not yet
dropped too much. In this region one actually should re-
define R(s) by (see (6))

R(s) ≡ σhad(s)
σµµ(s)

σBornµµ

4πα2

3s

=
σhad(s)
σµµ(s)

√
1 − 4m2

µ/s(1 + 2m2
µ/s) (59)

in order not to introduce fake phase space effects which
have nothing to do with the hadron cross section which

R is supposed to represent. The dispersion integral repre-
sentations of ∆αhad and ahadµ in terms of R(s) otherwise
would have to be modified appropriately.

Except from the threshold region one has to rely on
the much more involved procedure described above.

B Vacuum polarization

Here we comment on problems related to the treatment of
the vacuum polarization corrections at low time-like mo-
menta. They must be included in order to avoid unneces-
sary additional systematic errors which could obscure the
interpretation of the experimental results. In principle, for
processes like pion pair or muon pair production this can
be easily accomplished, namely by applying (7) to the
physical cross section obtained by unfolding from the other
QED corrections (as presented in this paper). However,
in the reference process needed for the normalization the
situation in general is much more involved. For example,
if wide angle Bhabha scattering is applied for the lumino-
sity monitoring, there are different scales involved due to
the mixed s- and t-channel dependences. Thus the depen-
dence of measurements like R(s), or equivalently |Fπ(s)|2,
on vacuum polarization effects is rather complicated as the
effective fine structure constant enters in various places
with different scales. Vacuum polarization effects if not
accounted for properly in the data analysis are thus hard
to reconcile at a later stage.

There is another problem: in applying (7) formally
α(s) is required at low energies in the time-like region.
However, particularly in the resonance regions, this is a
strongly varying function defined by the principal value
(PV) integral (5) and (1). In regions where R(s) is given
by data, the PV integral is quite ill defined and one would
have to model or smooth the data before integration. In
addition, the running coupling α(s) has to be seen in the
spirit of the renormalization group (RG), which in first
place is a systematic summation of the leading-log’s, the
next-to-leading-log’s, and so on. The definition via (5) and
(1), adopted commonly for the effective fine structure con-
stant, corresponds to the Dyson summation of the photon
propagator which yields an on-shell version of the effec-
tive electromagnetic coupling. In the latter approach also
non-logarithmic contributions are resummed and in gene-
ral this makes sense only if these contributions are small
enough such that it does not matter whether one takes
them into account in resummed or in perturbatively ex-
panded form. This usually is the case at high energies
where the log’s are large and clearly dominate. The dif-
ference between the RG and the Dyson resummation ap-
proach is less problematic in the Euclidean (space-like or t-
channel) and it is common practice to work with the space-
like effective charge and to take into account the terms
specific to the time-like region separately. In perturbation
theory the difference is given by the iπ terms from log-
arithms with negative arguments: (α/π) log(−q2/m2) =
(α/π)(log(q2/m2) − iπ). Since Π ′

γ(s) is complex at s >
4m2

π± (or above m2
π0 when π0γ production is included)

one could consider a complex α(s) (see (2) and (1)) via
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the shift (In perturbation theory a single fermion f of
charge Qf and color Ncf at one-loop contributes

∆α
(1)
f =

α

3π
Q2
fNcf

{(
1 +

yf
2

)
G(yf ) − yf − 5/3

}
, (60)

with

G(y) =

{√
1 − y

(
log 1+

√
1−y

1−√
1−y − iπ

)
, 0 < y < 1,

2
√
y − 1 arctan 1√

y−1 , y > 1,

and yf = 4m2
f/s. A light (>) or heavy (h) fermion yields

∆α
(1)
f =

{
α
3πQ

2
fNcf

(
log s

m2
f

− 5
3

)
(>),

0 (h).

The two-loop correction from a lepton is [58]

∆α
(2)
� (s) =

(α
π

)2 [
− 5
24

+ ζ(3) +
1
4
log

s

m2
�

− iπ
1
4

+ 3
m2
�

s
log

s

m2
�

+O
(
m4
�

s2

)]
. (61)

At least the electron contribution should be taken into
account)

∆α(s) = ∆αlep(s) +∆α
(5)
had(s), (62)

with

∆αlep(s) =
∑

�=e,µ,τ

(
∆α

(1)
� (s) +∆α(2)� (s) + · · ·

)
, (63)

∆αhad(s) = −αs
3π

Re
∫ ∞

4m2
π

ds′
R(s′)

s′(s′ − s− iε)
− i
α

3
R(s).

The imaginary part of ∆αhad is directly proportional
to R(s). Thus in perturbative QCD R(s) 
 Nc

∑
Q2
f (1 +

O(αs/π)) with Nc the color factor. Non-perturbative con-
tributions to R from resonances may be parametrized in
different ways (see e.g. [3,57]). For a narrow width reso-
nance we have

RNW(s) =
9πMR

α2
Γ
(0)
R,e+e−δ(s−M2

R), (64)

while for a Breit–Wigner resonance

RBW(s) =
9

4α2
ΓRΓ

(0)
R,e+e−

(
√
s−MR)2 +

Γ 2
R
4

. (65)

We also may consider a field theoretic form of a Breit–
Wigner resonance obtained by the Dyson summation of
a massive spin 1 transverse part of the propagator in the
approximation that the imaginary part of the self-energy
yields the width by ImΠV (M2

V ) =MV ΓV near resonance.
Here we have

RBW(s) =
9
α2

s

M2
R

Γ
(0)
R,e+e−

ΓR

sΓ 2
R

(s−M2
R)2 +M

2
RΓ

2
R
. (66)

MR and ΓR are the mass and the width of the resonance,
respectively, and ΓR,e+e− is the leptonic width as listed in
the particle data tables. In the formulae above we need
the undressed leptonic widths [3]

Γ
(0)
R,e+e− = ΓR,e+e−(α/α(M2

R))
2. (67)

Analytic formulae for the corresponding real parts the
reader may find in [57]. In general one has to take R(s)
from the data. The imaginary part leads to additional con-
tributions at order α2(s) and in the interference α(s) ×
Fπ(s). In the latter case one has to know the phase of the
pion form factor, which actually can be determined [64–
67]. This issue is beyond the scope of the present work.

In spite of the problems addressed above, what we need
is the 1pi photon VP as a building block for the calculation
all kind of (e.g., higher order) corrections and this is given
by

F (0)
π (s) = [1 −∆α(s)]Fπ(s), (68)

which in modulus square agrees with (13) up to contri-
butions from the imaginary parts. As we have mentioned
before, in [25], corresponding corrections have been ap-
plied together with the FS correction (14) to the “bare”
cross section referred to as σ0ππ(γ).

C Pion form factor

Pions are not point-like particles. It is therefore not pos-
sible to calculate the cross sections for pion pair pro-
duction from first principle using just scalar QED. Usu-
ally the pion structure is parametrized by the form fac-
tor Fπ(s) which contains all non-perturbative QCD effects
and which is only a function of s. A typical parameteriza-
tion for Fπ is the Gounaris–Sakurai parameterization [59]
which has been used in this paper:

Fπ(s) = (69)[
A1 −A2m

2
π

A1 +A2
sβ2

π

4 + f(s)
+A3eiA4

m2
ω

s−m2
ω + imωΓω

]
G(s),

where

f(s) =
1
π

(
m2
π − s

3

)
+

1
4π
sβ3π ln

[ √
s

2mπ
(1 + βπ)

]

− i
sβ3π
8
,

G(s) =

(
1

1 − s
M2 − i ΓM

)n

.

(For s1/2 < mπ+mω only the real part ofG(s) is kept. The
second term accounts for the ρ–ω interference. The factor
G(s) incorporates the effect of the ρ–ω inelastic channels.
The parameters are M = 1.2GeV, Γ = 0.15GeV [60] and
n = 0.22, A1 = 0.29GeV2, A2 = −2.3, A3 = −0.012,
A4 = 1.84 [61].) A slightly modified parametrization (see
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Fig. 15. The new CMD-2 data on the pion form-factor versus
Gounaris–Saurai-like parametrizations

Fig. 15) has been given more recently with parameters fit-
ted to the final CMD-2 data [25]. For other parameteriza-
tions see e.g. [62,63]. In fact the pion form factor can be
“parametrized” in a more model independent way by ex-
ploiting analyticity, unitarity and constraints from chiral
perturbation theory together with information from ππ
scattering data and by combining |Fπ(s)|2 data in both
the space-like and the time-like region [64–67,11].

It is the aim to extract Fπ from experimental data
by undressing the experimentally observed cross sections
from radiative corrections. Using the usual procedure of
unfolding the QED corrections leads to a model depen-
dence for the results which can be estimated by a com-
parison of different form factor parameterizations. In our
radiative return scenario we can get |Fπ(s)|2 directly via
(53). Note that for this |Fπ(M2

φ)|2 has to be determined
at an accuracy of 10% or better.

Why is the above form factor ansatz a reasonable one
to parametrize the extended structure of the strongly in-
teracting bound state pion? First of all it leads to the
right long range behavior if Fπ(0) = 1 which corresponds
to pure scalar QED. It also allows for a consistent treat-
ment of radiative corrections under the condition that one
should not think of a form factor as being related to a pion
vertex but to the Born amplitude (factorization):

M0(s)[e+e− → π+π−] = Mpoint
0 (s) × Fπ(s). (70)

Mpoint
0 is the Born amplitude for point-like pions, ob-

tained from scalar QED. For higher order virtual plus soft
photon corrections the amplitudes can then be written as

Mv+s(s) = δv+s × Mpoint
0 (s) × Fπ(s)

+
(
terms → m2

e

s

)
. (71)

The factor δv+s is again calculated by scalar QED. Clearly
this ansatz respects gauge invariance, the renormalization
procedure of scalar QED can then be applied and the can-
cellation of infrared divergences is also achieved.

Note that the “terms→ m2
e/s” stands for non-factorizing

IFS interference corrections. The above form may be as-
sumed to hold as an approximation also for the hard pho-
ton FS corrections. Without further investigations we can-
not say what is the systematic error we make by utilizing

this ansatz, however (see the discussion towards the end
of Sect. 4).
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